
Modeling and Simulation of a 5 DOF Robot Manipulator
for Assembly Operations Using Artificial Vision

Luis Felipe Mejía Rodríguez1, Jesús Carlos Pedraza Ortega2,
 Joaquín Santoyo Rodríguez1

1Universidad Tecnológica de Querétaro, Av. Pie de la Cuesta S/N,
Col. Lomas de San Pedrito Peñuelas, Querétaro, Qro., C.P. 76148, México

lmejia@uteq.edu,mx, jsantoyo@uteq.edu.mx
2Centro de Ingeniería y Desarrollo Industrial, Av. Pie de la Cuesta # 702,

Col. Desarrollo San Pablo, Querétaro, Qro., C.P. 76130, México
jpedraza@cidesi.mx

Abstract. The purpose of this paper is to show the applied methodology for
modeling, simulation and automatic program generation for basic assembly
operations using a 5 degree of freedom robot manipulator and a vision system.
The robot used was a Pegasus II from Amatrol, and the vision system consisted
of a web cam and a personal computer. The forward and inverse kinematics of
the manipulator is developed, and the results are used for simulation purposes.
The main goal is to manipulate small rods and put them into holes drilled in a
mounting board, with a program for the robot generated using visual
information. The software tools used are Visual C++ 6.0, the OpenGL graphics
library and Matlab 7.

1 Introduction

Flexible manufacturing (FM) must have a fast response to changes in production
requirements. In order to implement a FM cell, it is common to use robots, automatic
conveyors and storage, and CNC machinery. Despite this, it is still a common practice
to program the computers (including PLCs and robot controllers) “by hand”, delaying
the adjustment of the cell. One way for the solution of this problem is the automatic
generation of programs for the computers, considering the physical characteristics of
the operations required, like size, form, position, etc.

Computing power and costs enables us to process vision data for different tasks of
increasing complexity. One of such tasks is the automatic generation of programs for
robot controllers, using vision information to obtain the points that must be followed
by a robot, and thus allowing us to do the trajectory planning.

Robot modeling requires a deep understanding of the structure and dimensions of
the robot. Knowing the dimensions and movement restrictions of the robot, it is
possible to apply the Denavit-Hartenberg method to do the direct kinematics, and
using some positions constraints, based on the task required for the robot, the inverse
kinematics can be calculated.

A. Gelbukh, S. Suárez, H. Calvo (Eds.)
Advances in Computer Science and Engineering
Research in Computing Science 29, 2007, pp. 15-24

Received 10/09/07
Accepted 19/10/07

Final version 24/10/07

This work shows the development of the direct and inverse kinematics for an
educational robot of industrial quality, the Pegasus II from Amatrol, and its
application for simulation purposes. This work also shows an alternative for the
application of artificial vision and image processing in the extraction of positions
where assembly operations are required, and the generation of the associated program.

The software tools picked were Visual C++, OpenGL libraries and Matlab. C++ is
a general-purpose object-oriented language, very powerful and common in software
development. Matlab is a powerful mathematical environment, with toolboxes
specific for some kinds of applications, such as image acquisition and processing,
robotics, fuzzy control and neural networks. With the right mix of C++ and Matlab,
the developer can optimize the life cycle of software development, and with the use of
OpenGL a virtual representation can be obtained.

Some related works are [1], [2] and [5].

2 Development

In order to reach the goals of this work, several activities are necessary. This activities
are detailed in the next sections

2.1 System Design and Operational Environment

The general structure of the system is shown in the following figure.

Fig. 1. System design and operational environment.

The tasks that involve images are carried out in Matlab. The outcome of this stage
is an array of coordinates of the centers of the holes in a mounting board, stored in a
text file. The tasks of simulation and robot program generation are carried out in C++.
The outcome of this stage is a virtual robot doing the assembly and a program for the
robot controller that can do the actual assembly.

16 Luis Felipe Mejía Rodríguez, Jesús Carlos Pedraza Ortega, Joaquín Santoyo Rodríguez

2.2 Specifications and Characteristics of the Pegasus II from Amatrol

The robot manipulator used was a Pegasus II from Amatrol. This is an educational
robot, but it has many common characteristics with an industrial one.

Fig. 2. General structure of the Pegasus II

The robot has 5 degree of freedom, with the following rotation restrictions.

Table 1. Manipulator restrictions.

Articulation Angle of rotation
1 (waist) 345°

2 (shoulder) 220°
3 (elbow) 270°
4 (pitch) 270°
5 (roll) Unlimited

2.3 Modeling

The Denavit-Hartenberg parameters of the robot are as follows.

Modeling and Simulation of a 5 DOF Robot Manipulator for Assembly Operations ... 17

Table 2. Denavit-Hartenberg parameters of the robot.

Join θ D a α
1 q1 L1 0 π/2
2 q2 0 L2 0
3 q3 0 L3 0
4 q4 0 0 π/2
5 q5 L4 0 0

Where L1 = 324 mm, L2 = 230 mm, L3 = 230 mm and L4 = 42 mm.

For the inverse kinematics there exists some constraints, derived from the tasks

characteristics:
• The gripper will always be oriented downwards (normal to the mounting

surface of the robot), so the roll will be 0° (q5 = 0).
• The pitch will be a function of q2 and q3: q4 = q3 – q2.
• Angle q1 is free.
• Angles q2 and q3 are determined in terms of x, y and z, and in general there

will be 2 possible solutions.
• The z value for the pick and place coordinates is fixed, but the actual z value

will change while the robot is moving between the storage and a mounting
hole.

Fig. 3. Free body diagram for the inverse kinematics.

18 Luis Felipe Mejía Rodríguez, Jesús Carlos Pedraza Ortega, Joaquín Santoyo Rodríguez

With these diagram, we can obtain the next equations, solving the inverse kinematics:

⎟
⎠
⎞

⎜
⎝
⎛=

x
yq arctan1

(1)

22 yxr += (2)

3q+=πθ , 3coscos q−=θ , 3sinsin q−=θ (3)

()214
222 LzLyxL −+++= (4)

332
2

3
2

232
2

3
2

2
2 cos2cos2 qLLLLLLLLL ++=−+= θ (5)

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
=

32

2
3

2
2

2

3 2
arccos

LL
LLLq

(6)

⎟
⎠
⎞

⎜
⎝
⎛ −+

=
r

LzL 14arctanβ
(7)

L
q

LL
3

3

sinsinsin −
==

αθ

(8)

⎟
⎠
⎞

⎜
⎝
⎛ −=

L
qL 33 sinarcsinα

(9)

βα +=2q (10)

2/324 π−−= qqq (11)

05 =q (12)

Modeling and Simulation of a 5 DOF Robot Manipulator for Assembly Operations ... 19

2.4 Simulation

A basic solid model corresponding to the links of the manipulator is used at this time.
Given a sequence of desired mounting locations, the robot can follow the trajectories
between a fixed position (the storage) and a mounting hole.

Fig. 4. Robot and virtual model.

2.5 Vision System

The vision system in use is a basic one, but the results obtained with it are good
enough, and it wasn’t necessary to spend money buying specialized hardware. A
generic web cam and a PC are used. It is desired to have a good standard illumination,
but small variations can be compensated by the processing algorithm.

20 Luis Felipe Mejía Rodríguez, Jesús Carlos Pedraza Ortega, Joaquín Santoyo Rodríguez

2.6 Image Processing

With the image of the assembly that is required already in a file, the next step is the
binarization, based on the optimum threshold.

With the binary image it is possible to recognize the objects in the image applying
a cluster analysis. In this case the objects of interest are the holes for the mounting
operation. This can be carried out using 4-connected or 8-connected components.

Now each component (object) is processed to obtain the coordinates of its centroid,
using the formulas:

n

x
x

n

i
i∑

== 1

(13)

n

y
y

n

i
i∑

== 1

(14)

Where (xi, yi) are the coordinates of each pixel that belongs to a component and n
is the total number of pixels. Next, a factor is applied to map the pixel coordinates
with absolute coordinates in mm. This factor is determined by the physical size of the
board and the position where it will be put in front of the robot for the assembly.

2.7 Robot Program Generation

The Pegasus robot controller allows the use of Cartesian coordinates in the
application programs. In a structured world, it is possible to determine the position of
the centroid of the mounting holes with the required precision, and to use these points
to generate the trajectory of the manipulator.

A Cartesian coordinate for the Pegasus robot has 5 components: X, Y, Z, P (pitch)
and R (roll). X, Y and Z can be expressed as inches or millimeters, and the angles
normally are expressed in degrees. The Cartesian coordinates for the home position
are X=0”, Y=16.0”, Z=21.5”, P=–90°, R=0°.

The commands that can be used to move the robot and their syntax are:
• PMOVE(X coordinate, Y coordinate, Z coordinate, Pitch, Roll)
• TMOVE(X coordinate, Y coordinate, Z coordinate, Pitch, Roll)

The units are expressed as follows:
• Thousandths of an inch (X=7000 means X=7”).
• Tenths of a millimeter (X=100 means X=10 mm).
• Hundreths of a degree (P=900 means P=9 degrees).

A sample program in MCL (Manufacturing Control Language) generated by the

system is (4 mounting holes):

PMOVE <-3000,100,2000,-1221,0>

Modeling and Simulation of a 5 DOF Robot Manipulator for Assembly Operations ... 21

PMOVE <-3000,100,800,-942,0>
GRASP
PMOVE <-3000,100,2000,-1221,0>
PMOVE <-689,3530,2000,-1138,0>
PMOVE <-689,3530,800,-869,0>
RELEASE
PMOVE <-689,3530,2000,-1138,0>

PMOVE <-3000,100,2000,-1221,0>
PMOVE <-3000,100,800,-942,0>
GRASP
PMOVE <-3000,100,2000,-1221,0>
PMOVE <-290,2851,2000,-1236,0>
PMOVE <-290,2851,800,-951,0>
RELEASE
PMOVE <-290,2851,2000,-1236,0>

PMOVE <-3000,100,2000,-1221,0>
PMOVE <-3000,100,800,-942,0>
GRASP
PMOVE <-3000,100,2000,-1221,0>
PMOVE <96,3542,2000,-1147,0>
PMOVE <96,3542,800,-878,0>
RELEASE
PMOVE <96,3542,2000,-1147,0>

PMOVE <-3000,100,2000,-1221,0>
PMOVE <-3000,100,800,-942,0>
GRASP
PMOVE <-3000,100,2000,-1221,0>
PMOVE <495,2862,2000,-1232,0>
PMOVE <495,2862,800,-949,0>
RELEASE
PMOVE <495,2862,2000,-1232,0>

STOP

3 Experimental Work

So far the model for the robot is complete and the programs for simulation, image
acquisition and processing, and robot program generation are also complete.

An example mounting board is shown in the next figure.

22 Luis Felipe Mejía Rodríguez, Jesús Carlos Pedraza Ortega, Joaquín Santoyo Rodríguez

Fig. 5. Acquired image (the actual color of the board is gray).

The binary image after processing is:

Fig. 6. Binarized image.

The parameters obtained using the algorithm, expressed in pixels, are:
Centroid 1 : 22.1160 34.0973
Centroid 2: 102.0321 169.8586
Centroid 3: 179.2522 31.5304
Centroid 4: 258.9001 167.6744

4 Conclusions and Future Work

At this moment, only basic assembly operations have been done, but in the future it
will be possible to add another camera to obtain new data from the assembly
operation required, allowing the execution of more advanced assembly between parts.

The robot used, despite the industrial quality of its components, is intended for
educational purposes. It will be possible to replace the robot with an industrial one,
and with the appropriate changes in the parameters of the robot and the syntax of the
instructions, the simulation and program generation will be possible.

The web cam can also be replaced with one designed for industrial use, using a
good illumination scheme, which can lead to better parameter determination for the
assembly.

Modeling and Simulation of a 5 DOF Robot Manipulator for Assembly Operations ... 23

For simulation purposes it is possible to do a CAD definition of the robot, export it
to a VRML or OBJ format, and use the file to obtain a better approximation to the real
world.

References

1. Soto Cajiga J. A., Vargas Soto J. E., Pedraza Ortega J. C.: Trajectories generation for a robot
manipulator using image processing and splines. Segundo Congreso Internacional de
Ingeniería, Querétaro, Qro., México (2006).

2. Gamiño M., Pedraza J. C., Ramos J. M., Gorrostieta E.: Matlab–C++ interface for a flexible
arm manipulator simulation using multi-language techniques. Proceedings of the fifth
Mexican international conference on artificial intelligence (MICAI’06). México (2006).

3. Myler H., Weeks A.: Computer imaging recipes in C. Prentice-Hall, USA (1993).
4. Kurfess, Thomas R. (Editor): Robotics and automation handbook. 1st edition. CRC Press,

USA (2005).
5. Viramontes Reyna, J. L., Pedraza Ortega, J. Carlos, González Galván, Emilio J.: Vision-

based manipulator control using a monocular vision system. 5th Internatiomal Simposium
on Robotics and Automation, San Miguel Regla, Hidalgo, México (2006).

6. Gonzalez, Rafael C., Woods, Richard E.: Digital image processing, 2nd edition. Prentice-
Hall, USA (2002).

24 Luis Felipe Mejía Rodríguez, Jesús Carlos Pedraza Ortega, Joaquín Santoyo Rodríguez

